A Comparative Study of Some Markov Random Fields and Different Criteria Optimization in Image Restoration

نویسندگان

  • José I. De la Rosa
  • Jesús Villa
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Generation of super-resolution images from blurred observations using Markov random fields

This paper presents a new technique for generating a high resolution image from a blurred image sequence; this is also referred to as super-resolution restoration of images. The image sequence consists of decimated, blurred and noisy versions of the high resolution image. The high resolution image is modeled as a Markov random field (MRF) and a maximum aposteriori (MAP) estimation technique is ...

متن کامل

Primal-dual Algorithm for Convex Markov Random Fields

Computing maximum a posteriori configuration in a first-order Markov Random Field has become a routinely used approach in computer vision. It is equivalent to minimizing an energy function of discrete variables. In this paper we consider a subclass of minimization problems in which unary and pairwise terms of the energy function are convex. Such problems arise in many vision applications includ...

متن کامل

Computed Tomography Image Restoration Using Convex-potential 3-d Markov Random Fields

In order to design and manufacture custom-fitted prostheses of the knee joint, one must perform a very accurate geometric reconstruction of the bone surface from computed tomography images. This communication deals with the image restoration used to improve the reconstructed images. In the Bayesian context of maximum a posteriori estimation, edge-preserving Markov random fields as an a priori m...

متن کامل

Unsupervised Texture Image Segmentation Using MRFEM Framework

Texture image analysis is one of the most important working realms of image processing in medical sciences and industry. Up to present, different approaches have been proposed for segmentation of texture images. In this paper, we offered unsupervised texture image segmentation based on Markov Random Field (MRF) model. First, we used Gabor filter with different parameters’ (frequency, orientatio...

متن کامل

Statistical image segmentation using Triplet Markov fields

Hidden Markov fields (HMF) are widely used in image processing. In such models, the hidden random field of interest S s s X X ∈ = ) ( is a Markov field, and the distribution of the observed random field S s s Y Y ∈ = ) ( (conditional on X ) is given by ∏ ∈ = S s s s x y p x y p ) ( ) ( . The posterior distribution ) ( y x p is then a Markov distribution, which affords different Bayesian process...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017